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Perturbation theory can work for thermodynamic quantities! Let’s use it!

• HTLpt from Andersen, Su, Strickland. Dimensional Reduction/EQCD – the Finish Group
3

where we have assumed Nc = 3 (for larger Nc we would

have two independent quartic terms for the A
0

field), and

where the last term �L
E

stands for a series of higher order

non-renormalizable operators that start to contribute to

the EoS only beyond O(g6

). The theory is parametrized

by four constants: The three-dimensional gauge coupling

g
3

, the electric screening mass m
E

, the cubic coupling

� ⇠
�

f µf (see [32] for details), as well as the quartic

coupling �
E

. All of these parameters have expansions

in powers of the four-dimensional gauge goupling g, and

their values have been determined to the accuracy re-

quired by the four-loop evaluation of the EoS, some even

beyond this (see e.g. [33]).

As discussed in [24], the above way of writing the

full theory pressure suggests a very natural resummation

scheme: While the unresummed weak coupling expan-

sion is obtained by expanding the (perturbatively deter-

mined) EQCD partition function in powers of the four-

dimensional gauge coupling g, one may alternatively sim-

ply skip this last step and keep p
EQCD

a function of the

e�ective theory parameters, writing

T p
EQCD

= p
M

+ p
G

, (9)

where the functions p
M

and p
G

can be read o� from

eqs. (3.9) and (3.12) of [4]. In [24], this procedure was

observed to lead to a considerable improvement of the

convergence and renormalization scale dependence of the

full theory pressure at zero chemical potential. It can,

however, be applied to the case of the finite density pres-

sure or the quark number susceptibilities with equal ease,

which is what we have implemented in our calculations.

An important step in this in principle straightforward ex-

ercise is to use the e�ective theory parameters in a form,

where they have been analytically expanded in powers of

µ/T ; cf. appendix D of [4] and appendix B of [34]. We

refrain from writing the resulting, very long expressions

here, but simply display the result of the procedure in

the plots to follow.

Choice of parameters. Before proceeding to a quanti-

tative comparison of our predictions with lattice data, we

will briefly discuss our choices for the parameters appear-

ing in the results. These include the values of the renor-

malization scale

¯

� and the QCD scale �

MS

, in addition

to which a prescription for determining the form of the

running gauge coupling must be specified. In both the

HTLpt and DR calculations, we follow standard choices

used in the literature, which we summarize below.

In perturbative calculations of bulk thermodynamic

observables, the renormalization scale

¯

� is typically given

a value of roughly 2⇡T and then varied by a factor of 2

in order to measure the sensitivity of the result with re-

spect to this choice. Optimally, the central value should

result from a presecription such as the Fastest Apparent

Convergence (FAC) or the Principle of Minimal Sensi-

tivity (PMS). For the HTLpt result, neither of these is

however available, and hence the central value is chosen

as 2⇡T . In the DR calculation, we on the other hand

follow a commonly used prescription introduced in [29]
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FIG. 1. A comparison of our HTLpt (wider, red band)
and DR (blue band) results for the second order baryon
number susceptibility �B/T 2 with the lattice results of the
HotQCD [1] (black dots, extending to T � 250 MeV) and
Wuppertal-Budapest [2] (WB, green dots) collaborations.
The bands corresponding to the perturbative results originate
from varying the values of �̄ and �

MS

within the ranges indi-
cated in the text. Asymptotically, all of the results approach
the limiting value of 1/3.

and apply FAC to the three-dimensional gauge coupling

g
3

, thus obtaining

¯

�

central

� 1.445 ⇥ 2⇡T .

For the dependence of the gauge coupling constant on

the renormalization scale, we use a one-loop perturba-

tive expression in the HTLpt result and a two-loop one

in the DR case. This is in accordance with the usual

rule that the uncertainties originating from the running

of the gauge coupling should not exceed those due to the

perturbative computation itself. Finally, for the choice of

the QCD scale �

MS

we use a recent lattice determination

of the value of the strong coupling constant at a refer-

ence scale of 1.5 GeV [35]. Requiring that our one- and

two-loop running couplings agree with this, we obtain

the values of 176 and 283 MeV in these two cases, re-

spectively. To be conservative, we vary the value of �

MS

around these numbers by 30 MeV, which is somewhat

larger than the reported lattice error bars.

Results. In Fig. 1, we display our results for the sec-

ond order baryon number susceptibility �B ⌘ �2p/�µ2

B ,

which to a very good accuracy satisfies the relation

�B = �uu/3 and for which most of the lattice data has

been derived. As the widths of the red and blue bands —

corresponding respectively to the HTLpt and DR results

— demonstrate, the dependence of our results on the

renormalization scale and the value of �

MS

is rather mild.

For instance, a comparison of the DR band with the un-

resummed four-loop result of [3] shows a reduction of the

uncertainty by a factor of nearly 10 in this temperature

range. Our two results are in addition in reasonably good

agreement with each other, considering that the current

HTLpt result is only of one-loop order. A comparison

with the recent continuum extrapolated lattice data of

Experiment

Lattice Data

HTLpt
EQCD

Want to compute transport with similar precision at high T

Baryon # 
succetibility Resummation

Works!!



Motivation

• This calculation uses LO order photon production rates (Turbide, Rapp, Gale)Photon Production in Hot and Dense Strongly Interacting Matter 23
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Fig. 18. The spectrum of real photons measured in Au - Au collisions at RHIC. The top panel
data is extracted following the same technique (identifying low mass dileptons with a virtual
photon) as that used for the low momentum part of Figure 13, and is for a centrality class of
0 - 20%. The data set “PHENIX (1)” is from [65], while the data set “PHENIX (2)” is from
[67]. The latter supersedes the former. The bottom panel is for a centrality class of 0 - 10%;
the higher momentum data there corresponds to a direct measurement and is from Ref. [68].
The different contributions are discussed in the main text.

RγAA(b, pT ,y) =

� 2π
0 dφdNγ (b)/d2pT dy

2πTAB(b)dσ pp
prompt/d2pTdy

(33)

we only consider y = 0 in this work. Also, as advertised previously, the azimuthal anisotropy
coefficient might help disentangle some of the photon sources. Both these projections of the
data are examined. In what concerns RγAA, it is first useful to isolate some of the cold nuclear
matter effects; this is done in the left panel of Figure 19. In these estimates, a considerable
effect on the nuclear modification factor is caused by neglecting the jet-plasma photons. This
amounts to a reduction of approximately 30% (at intermediate values of pT ), as seen in the
right panel of Fig. 19. The two extreme cases - where jet-plasma photons are present or not -
bracket the experimental data; the current large error bars do not permit a choice. The apparent
downward trend of the data is intriguing. Isospin contributes to this as noticed in Ref. [70], and
seen in the left panel. Notably, in the calculations presented here, the additional suppression in
RγAA originates from the fact that jets fragmenting into photons have lost energy. This consti-

We want to compute
this rate at NLO

Thermal rate is
dominant for a 
certain momentum
range

Direct photons are measured, but this is not my real motivation . . .



My real motivations:

1. Energy loss.

2. The shear viscosity.



My real motivation. Energy loss at sub-asymptotic energies is important:

1. Kinematic constraints limit the agreement between energy loss formalisms

– See the report of the Jet Collaboration: arXiv:1106.1106

2. Finite energy leads to large angle emission outside of radiative loss formalism

T

�✓

E

T

(1 � x)E

xE

As the bremmed energy gets lower and lower, the angle �✓ gets larger and larger,

limiting the agreement



My real motivations:

X Energy loss

2. The shear viscosity



My real motivation. Shear viscosity and the kinetics of weakly coupled QGP

1. Hard Collisions: 2 $ 2

Q~T

P ~ T

2. Diffusion: collisions with soft random classical field

soft fields have p ⇠ gT and large occupation numbers nB ⇠ T
p ⇠ 1

g

P~T

~gT ~gT



3. Brem: 1 $ 2

• random walk induces collinear bremsstrhalung

P+K

K

P
~gT

NLO involves corrections to these processes and the relation between them

But shear viscosity is too hard . . .



My real motivations:

X Energy loss

X The shear viscosity

Photon production at NLO is a good warm-up calculation.

Lets do it!



Hot QGP

K

2k(2⇡)

3

d�

d

3k
= Photon emission rate per phase-space

The photon emission rate at weak coupling:

• The rate is function of the coupling coupling constant and k/T :

2k(2⇡)

3

d�

d

3k
/ e2T 2

h
O(g2 log) + O(g2)| {z }

LO AMY

+

O(g3 log) + O(g3)| {z }
From soft gT gluons, nB ' T

! ' 1

g

+ . . .

O(g3) is closely related to open issues in energy loss:

• At NLO must include drag, collisions, bremsstrhalung, and kinematic limits



Three rates for photon production at Leading Order Baier,Kapusta, AMY

1. Hard Collisions – a 2 $ 2 processes

K

Q~T
⇠ e2 m2

1|{z}
g2CF T 2/4

⇥ nF (k)| {z }
fermi dist.

⇥
⇥
log (T/µ) + C

2to2

(k)

⇤

2. Collinear Bremsstrhalung – a 1 $ 2 processes

P+K
K

P
~gT

⇠ e2 m2

1nF

⇥
C

brem

(k)| {z }
LPM + AMY and all that stuff!

⇤



3. Quark Conversions – 1 $ 1 processes (analogous to drag)

K K

~gT or

K

~gT

K

= ⇠ e2m2

1nF [log(µ?/m1) + C
cnvrt

]

Full LO Rate is independent of scale µ?:

2k
d�

d

3k
/ e2m2

1nF

h
log (T/m1) + C

cnvrt

+ C
brem

(k) + C
2to2

(k)| {z }
⌘ CLO(k)

i



O(g) Corrections to Hard Collisions, Brem, Conversions:

1. No corrections to Hard Collisions:

2. Corrections to Brem:

(a) Small angle brem. Corrections to AMY coll. kernel. (Caron-Huot)

Q = (q+, q�, q?) = (gT, g2T, gT )

✓ ⇠ g

CLO[q?] =

Tg2m2

D

q2?(q2? + m2

D)

! A complicated but analytic formula

(b) Larger angle brem. Include collisions with energy exchange, q� ⇠ gT .

✓ ⇠ p
g

Q = (q+, q�, q?) = (gT, gT, gT )



3. Corrections to Conversions:

K K

or

K

~gT

K
• Doable because of HTL sum rules (light cone causality) Simon Caron-Huot

• Gives a numerically small and momentum indep. contribution to the NLO rate

Full results depend on all these corrections.

These rates smoothly match onto each other as the kinematics change.



NLO Results: �LO+NLO ⇠ LO + g

3 log(1/g) + g

3

2k
d��NLO

d

3k
/ e2m2

1nF (k)
h

conversions
z }| {
�m2

1
m2

1
log

✓p
2TmD

m1

◆
+

large-✓-brem
z }| {
�m2

1
m2

1
Clarge�✓(k)+

small-✓-brem
z }| {
g2CAT

mD
Csmall�✓(k)

i
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Corrections are small and k independent



NLO Results: �LO+NLO ⇠ LO + g

3 log(1/g) + g

3

2k
d��NLO

d

3k
/ e2m2

1nF (k)
h

conversions
z }| {
�m2

1
m2

1
log

✓p
2TmD

m1

◆
+

large-✓-brem
z }| {
�m2

1
m2

1
Clarge�✓(k)+

small-✓-brem
z }| {
g2CAT

mD
Csmall�✓(k)

i
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The different contributions at NLO (conversions are not numerically important)

large-✓ radiation suppressed at NLO

small-✓ radiation enhanced at NLO
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The calculation



Semi-collinear radiation – a new kinematic window

2 ! 2 processes

semi-collinear radiation

collinear radiation

The semi-collinear regime interpolates between brem and collisions



Matching collisions to brem

• When the gluon is hard the 2 $ 2 collision:

is physically distinct from the wide angle brem



Matching collisions to brem

• When the gluon becomes soft (a plasmon), the 2 $ 2 collision:

✓ ⇠ p
g

is not physically distinct from the wide angle brem

✓ ⇠ p
g

q

� ⇠ gT

Need both processes

– For harder gluons, q� ! T , this becomes a normal 2 ! 2 process.

– For softer gluons, q� ! g2T , this smoothly matches onto AMY.



Matching collisions to brem

• When the gluon becomes soft (a plasmon), the 2 $ 2 collision:

E ⇠ T

p
s ⇠

p
2Tm

D

✓ ⇠
p
s

E

⇠ p
g

Q ⇠ m

D

is not physically distinct from the wide angle brem

✓ ⇠ p
g

q

� ⇠ gT

Need both processes

– For harder gluons, q� ! T , this becomes a normal 2 ! 2 process.

– For softer gluons, q� ! g2T , this smoothly matches onto AMY.



Brem and collisions at wider angles (but still small!)

• Photon emission rate

2k
d�

d3k
⇠

Z

phase�space

np(1 � np+k) |M|2 (2⇡)

4�4(P
tot

)

• The matrix element is

✓ ⇠ p
g

P

+
in P

+
out ⌘ z P

+
in

q

� = �E ⌘ P

�
out � P

�
in ⇠ gT

|M|2 (2⇡)

4�4(P
tot

) /
Z

Q

1 + z2

z| {z }
QCD splitting fcn

1

(q�)

2

hFi+ Fi+(Q)i
| {z }

scattering-center

2⇡�(q���E)

All of the dynamics of the scattering center in a single matrix element hFi+Fi+(Q)i



Finite energy transfer sum-rule

✓ ⇠ p
g

�E = q

� = P

�
out � P

�
in ⇠ gT

• The AMY collision kernel C[q?] involves Aurenche, Gelis, Zakarat

q2?C[q?] =

Z 1

�1

dq+

2⇡
hFi+Fi+(Q)i|q�=0

=

Tm2

D

q2T + m2

D

• We need a finite q� = �E generalization of the sum rule
Z 1

�1

dq+

2⇡
hFi+Fi+(Q)i|q�=�E = T


2(�E)

2

(�E2

+ q2? + m2

D) + m2

Dq2?
(�E2

+ q2? + m2

D)(�E2

+ q2?)

�

Wider angle emissions can be included by a “simple” modified collision kernel



Matching between brem and conversions

semi-collinear radiation

collinear radiation

2 ! 2 processes

What happens when the

final quark is soft?

When the quark becomes soft need to worry about conversions.



Matching between brem and conversions

• When the final quark line is hard, the brem process :

is physically distinct from the conversion process:



Matching between brem and conversions

• When the final quark line becomes soft, the brem process :

P

K ' P

µ < zP

is not physically distinct from the conversion process

P K ' P

zP < µ

Separately both processes depend on the separation scale, µ ⇠ gT , but . . .

the µ dep. cancels when both rates are included

• The LO small-✓ and large-✓ brem rates depend linearly and logarithmically on an

infrared separation scale, µ.

The NLO conversion rate will depend on a UV cutoff µ and cancels this dependence



Brem rates with a soft quark

P

K ' P

µ < zP

• Small angle brem

2k
d�

d3k

����
zP>µ

= Leading Order Rate + Finite � # g2µ| {z }
linear IR dependence µ

• Wide angle brem

2k
d�

d3k

����
zP>µ

/ �m2

1
4⇡

log

p
2TmD

µ| {z }
Log IR dependence on µ

+ Finite

The conversion rate should cancel this dependence on µ



Computing the conversion rate with sum-rules (LO): (see also Bodeker)

K K

~gT
2k(2⇡)

3

d�

cnvrt

d

3k
/ e2nF (k) q̂

cnvrt

(µ)

• q̂
cnvrt

is the quark version of q̂

q̂
cnvrt

(µ?) =

Z ⇠µ
d

2pT

(2⇡)

2

Z µ

�µ

dpz

2⇡
Tr

h
�
+

S<
(!,p)

i

!=pz

| {z }
evaluate with sum rule

=

Z µ d2pT

(2⇡)

2

m2

1
p2T + m2

1

where

SR(X) =

D
 (X)eig

R X
0 dxµAµ

¯ (0)

E



Computing the conversion rate at NLO with sum-rules:

K K

2k(2⇡)

3

d�

cnvrt

d

3k
/ e2 nF (k) q̂

cnvrt

(µ)

• At NLO we have only to replace m2

1 ! m2

1 + �m2

1

q̂
cnvrt

=

Z µ d2p?
(2⇡)

2

m2

1 + �m2

1
p2T + m2

1 + �m2

1| {z }
finite + UV logarithmic divergence in µ

+ #g2µ

| {z }
linear UV divergence in µ

The UV divergences of conversion rate match with the IR divergences of large and

small angle brem giving a finite answer



Summary of the matching calculations at NLO

2k(2⇡)

3

d��NLO

d

3k
/ finite � C

1

g2µ| {z }
collinear contribution

+ finite + C
2

�m2

1
4⇡

log

p
2TmD

µ| {z }
semi-collinear contribution

+ finite + C
1

g2µ + C
2

�m2

1
4⇡

log

µ

mD| {z }
conversions

The µ dependence cancels between the different contributions



Conclusion

• The result again
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• All of the soft sector buried into a few coefficients, �m2

1 and q̂
cnvrt

– Can we compute these non-perturbatively ?

Many things can be computed next (e.g. shear viscosity and e-loss)


